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Recent predictions from competing theoretical models have disagreed about the
stability/instability of bi-periodic patterns of surface waves on deep water. We present
laboratory experiments to address this controversy. Growth rates of modulational
perturbations are compared to predictions from: (i) inviscid coupled nonlinear
Schrödinger (NLS) equations, according to which the patterns are unstable and
(ii) dissipative coupled NLS equations, according to which they are linearly stable.
For bi-periodic wave patterns of small amplitude and nearly permanent form, we find
that the dissipative model predicts the experimental observations more accurately.
Hence, our experiments support the claim that these bi-periodic wave patterns are
linearly stable in the presence of damping. For bi-periodic wave patterns of large
enough amplitude or subject to large enough perturbations, both models fail to
predict accurately the observed behaviour, which includes frequency downshifting.
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1. Introduction and main conclusions
Surface waves on deep water have been described in terms of plane waves of

permanent form, with one-dimensional surface patterns, at least since Stokes (1847,
1966). Less is known about deep-water waves with two-dimensional surface patterns
(so the velocity fields are three-dimensional), like those shown in figure 1. Approximate
models of wave patterns like these date back to the 1950s (Fuchs 1952; Chappelear
1959), but mathematical proof of the existence of such wave patterns is much more
recent (Craig & Nicholls 2000, 2002; Iooss & Plotnikov 2009). Detailed experimental
studies of wave patterns like these are also more recent (Kimmoun, Branger & Kharif
1999; Hammack, Henderson & Segur 2005; Henderson, Patterson & Segur 2006).

An important aspect of the studies of two-dimensional wave patterns of permanent
form on deep water has been their stability. Roskes (1976), using coupled nonlinear
Schrödinger (NLS) equations, and Dhar & Das (1991), using coupled Dysthe-type
equations (Dysthe 1979), both without dissipation and allowing only one-dimensional
perturbations, showed that two-dimensional wave patterns of permanent form on
deep water are unstable because of a modulational instability. (The modulational
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Figure 1. Photograph of bi-periodic surface waves with frequency 4 Hz and wavelength in
the direction of propagation of about 10 cm.

instability had been discovered earlier for plane waves by Benjamin & Feir 1967,
Ostrovsky 1967 and Zakharov 1968.) Roskes (1976) and Dhar & Das (1991) showed
that the modulational instability is not restricted to plane waves. Their predictions
of instability were later generalized to allow two-dimensional perturbations, again
without dissipation, by Ioualalen & Kharif (1994), Baludin et al. (1995) and Leblanc
(2009). Baludin et al. (1995) made a point of relating their analysis to earlier
work on stability, in several contexts. More recently, some of these results were
re-derived by Onorato, Osborne & Serio (2006) and Shukla et al. (2006), using
coupled (i.e. vector) nonlinear Schrödinger (VNLS) models, without dissipation. These
instabilities are also studied in a numerical investigation of two-dimensional surface
patterns in deep water using a Boussinesq-type model by Fuhrman, Madsen &
Bingham (2006). Craig et al. (2007) also predicted this: waves with two-dimensional
surface patterns are unstable in a VNLS model without dissipation. But they also
predicted that any amount of dissipation stabilizes the instability. This lack of
agreement among theoretical models on the stability/instability of waves with two-
dimensional surface patterns on deep water motivated the experimental study
described herein.

Experimental evidence of the stability/instability of bi-periodic wave patterns
was discussed qualitatively by Kimmoun et al. (1999), Hammack et al. (2005) and
Henderson et al. (2006), with related information by Fuhrman & Madsen (2006). To
our knowledge, the results presented herein provide the first experimental, quantitative
test of predictions of stability/instability of bi-periodic wave patterns on deep water.
We present laboratory experiments that test the predictions of stability/instability
according to two models: (i) a non-dissipative VNLS model with a dissipative
correction added a posteriori and (ii) a dissipative VNLS model, which allows the
dissipation to interact with the other terms in the model. The first model predicts
effective instability whenever the growth rate of the (non-dissipative) instability
exceeds the decay rate due to dissipation. The prediction of the second model is
less intuitive: it predicts linear stability for any positive dissipation rate, including
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very small rates. (For very small dissipation rates, long distances are required to
observe the total growth of the perturbation, so a long test section is required to
determine stability/instability experimentally.)

All of our experiments were conducted in the wave tank shown in figure 1.
A limitation of this facility is that the tank is relatively short (12 ft from the
wavemakers to the other end of the tank). As a result, our experiments were able to
discriminate between the predictions of the competing models only if the dissipation
rate was relatively high, so that the relevant dynamics occurred over a relatively short
distance. Therefore, we are unable to test in our facility the most intriguing point of
disagreement of the competing theoretical models: whether dissipation can stabilize
the modulational instability, even for very small dissipation rates.

Here is what we can do. For a fixed dissipation rate, each model predicts not
only stability versus instability, but also the detailed evolution of the entire wave
system. Thus, for that dissipation rate, we compare the observed evolution in the
wave tank with the evolution predicted by each theory. We determine which model
more accurately predicts the evolution observed in the tank, at that dissipation rate.
This way, we can decide which of the two competing models is more accurate, at
each dissipation rate for which our experiments are conclusive.

We show below that for wave patterns with small to moderate amplitudes and
subject to small enough perturbations, the dissipative VNLS model predicts the
experimental data more accurately than does the non-dissipative model, even after
a dissipative correction. Thus, our experiments favour the dissipative model as more
accurate; so they also favour its conclusion: bi-periodic wave patterns are linearly
stable in the presence of dissipation, at least when dissipation is large enough. The
dissipative VNLS model predicts linear stability for any positive dissipation rate; our
experiments corroborate this prediction for strong dissipation and are inconclusive
for weak dissipation.

We also show that without linearizing the two models in question, the dissipative
VNLS model predicts the measured wave evolution more accurately than does the
non-dissipative model, even after adding a dissipative correction to that model. The
inaccuracy of the non-dissipative VNLS model is most striking in its predictions of
the evolution of the carrier wave itself: the non-dissipative VNLS model predicts
large oscillations of the carrier-wave amplitude, which do not occur in the measured
data.

Finally, we show that for wave patterns with large enough amplitude or for
patterns subjected to large enough perturbations, neither of these VNLS models, with
or without dissipation, describes the experimental results accurately: the measured
wave patterns show frequency downshifting (e.g. Lake et al. 1977), not predicted by
either model. Neither the non-dissipative nor the dissipative VNLS model applies
to the large-amplitude experiments because both models conserve an integral of the
motion that the large-amplitude experiments do not conserve. The observation that
spatially periodic wave patterns of large amplitude experience frequency downshifting
that is not included in the models demotes any issue about the stability/instability of
bi-periodic wave patterns of large amplitude to a non-central issue. Our results for
two-dimensional wave patterns, like that in figure 1, are consistent with the earlier
results of Segur et al. (2005):

(i) for wave patterns of small to moderate amplitude, dissipation is required in
NLS-type models for agreement with experiments;

(ii) for wave patterns of large amplitude, NLS-type models, with or without
dissipation, simply do not apply.
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We expect these stability results to apply to any physical system that uses NLS-type
equations to model the evolution of waves of small to moderate amplitude, subject
to small perturbations: even small damping can stabilize the modulational instability.
For large-amplitude waves or perturbations, one should consider the possibility
that downshifting and a breakdown of the applicability of the NLS-type model
might occur, as it does in water waves. Other such systems include nonlinear optics
(Ostrovsky 1967; Zakharov 1967; Anderson & Lisak 1984; Tai, Tomita & Hasegawa
1986; Hasegawa & Kodama 1995), and plasmas (Hasegawa 1972; McKinstrie &
Bingham 1989).

In the following, we review the results from the dissipative and non-dissipative
VNLS models for two interacting wavetrains as well as how to apply these models to
experimental data in § 2, describe the experimental procedures in § 3 and present the
comparison of predictions and experimental measurements in § 4. We briefly sum up
the results and make concluding remarks in § 5.

2. Theoretical considerations
We wish to study the stability of wave patterns like that shown in figure 1. To do

so, we consider the stability of uniform wavetrain solutions to two VNLS models: one
with and one without dissipation. In this section, we present the theoretical results
from these two models (§ 2.1) and show how we use these results to make predictions
for quantitative comparison with symmetric experiments (§ 2.2).

2.1. Results from VNLS models

The wave pattern in figure 1 was generated using two wavetrains with the same
frequency and amplitude propagating at an oblique angle to each other, resulting in a
symmetric bi-periodic surface pattern. More generally, we may allow for two carrier
waves with arbitrary parameters, so that the water-surface displacement, η(x, y, t),
may be described at leading order (in a formal σ -expansion) as their sum:

η(x, y, t; σ ) = 2σ [|Â| sin(kAx + lAy − ωAt + φ̂A)

+ |B̂| sin(kBx + lBy − ωBt + φ̂B)] + O(σ 2), (2.1)

where σ � 1 is a measure of weak nonlinearity, kA/B and lA/B are the x and y

wavenumbers of the Ath and Bth carrier waves, ωA/B are their frequencies and the

complex envelope amplitudes iÂ(X, Y, T ) = |Â|eiφ̂A and iB̂(X, Y, T ) = |B̂|eiφ̂B vary on
slow scales X = σx, Y = σy and T = σ t . Under the assumptions that we have two
wavetrains on deep water that are weakly nonlinear, nearly monochromatic and
subject to weak exponential-type damping, the standard method of multiple scales
(see, for example, Hammack et al. 2005) results in coupled evolution equations for
the (complex) amplitudes:

i(∂T Â + cA∂XÂ + dA∂Y Â) + σ [αA∂XXÂ + βA∂YY Â + γA∂XY Â

+ ξA|Â|2Â + ζAB |B̂|2Â] + iσδAÂ = 0, (2.2a)

i(∂T B̂ + cB∂XB̂ + dB∂Y B̂) + σ [αB∂XXB̂ + βB∂YY B̂ + γB∂XY B̂

+ ξB |B̂|2B̂ + ζBA|Â|2B̂] + iσδBB̂ = 0. (2.2b)
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Here cA/B and dA/B are the x and y components of the group velocities of the
Ath and Bth waves, αA/B , βA/B and γA/B are constants depending on the dispersion
relation between the carrier-wave frequencies and wavenumbers, ξA/B are self-coupling
coefficients, ζAB/BA are cross-coupling coefficients between the two carrier waves and
dissipation is included through the linear damping rates, δA and δB . The dissipative
terms in (2.2), which lead to exponential damping, can be derived from the Navier–
Stokes equations (cf. Miles 1967; Dias, Dyachenko & Zakharov 2008). We use this
form of damping in this study because it agrees with observations. (See, for example,
figure 4a of this paper or Appendix A of Segur et al. 2005.) It has been used in the
scalar version of (2.2), for which B̂ ≡ 0, by Lake et al. (1977) and Mei & Hancock
(2003) for water waves and in optics by Luther & McKinstrie (1990), Hasegawa &
Kodama (1995) and Karlsson (1995).

With no dissipation, δA = δB ≡ 0, so that (2.2) become the (non-dissipative) VNLS
equations, used, for example, by Benney & Newell (1967), Hammack et al. (2005),
Onorato et al. (2006), Shukla et al. (2006) and Craig et al. (2007).

A referee brought to our attention that (2.2) are derived in the limit σ → 0,
but they still contain σ . As we show in § 2.2, the factor σ in (2.2) scales out when
we restrict our attention to symmetric wave patterns with symmetric perturbations.
Pierce & Knobloch (1994) overcame the problem of a σ -dependent model for counter-
propagating wavetrains differently, at the cost of introducing non-local terms into
the equations. Their idea was generalized by Bridges & Laine-Pearson (2005), who
studied the stability of short-crested waves, like those considered here, and obtained
similar results without using non-local terms. Both of these papers assume no
dissipation.

Craig et al. (2007) also considered the dissipative case (δA > 0, δB > 0), for which
it is convenient to recast the system to one that factors out the exponential decay.
Following their analysis, we make the change of variables:

Â(X, Y, T ; σ ) = e−σδAT A,

B̂(X, Y, T ; σ ) = e−σδBT B.

}
(2.3)

Then (2.2) becomes

i(∂T A + cA∂XA + dA∂Y A) + σ [αA∂XXA + βA∂YY A + γA∂XY A

+ ξAe−2σδAT |A|2A + ζABe−2σδBT |B|2A] = 0, (2.4a)

i(∂T B + cB∂XB + dB∂Y B) + σ [αB∂XXB + βB∂YY B + γB∂XY B

+ ξBe−2σδBT |B|2B + ζBAe−2σδAT |A|2B] = 0. (2.4b)

All of the coefficients in (2.4), except for the damping rates (discussed below), are
the same as in (2.2). These coefficients have been derived by Dhar & Das (1991) and
others, for pure gravity waves. Here we include the effects of both gravity and surface
tension, as listed in Appendix A.

In our laboratory experiments (§§ 3 and 4), we measure time series at fixed x-
locations at increasing distances from the wavemaker, so that evolution is measured
with respect to x. For comparison with data, we re-cast the above equations by
interchanging the roles of (X, T ), making X the evolution variable. To do this, we use
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the ordering prescribed by (2.4) which gives

∂A

∂X
= − 1

cA

(
∂A

∂T
+ dA

∂A

∂Y

)
+ O(σ ),

∂B

∂X
= − 1

cB

(
∂B

∂T
+ dB

∂B

∂Y

)
+ O(σ ),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5)

so that to VNLS order, (2.3) becomes

Â(X, Y, T ; σ ) = e−σ δ̃AXA,

B̂(X, Y, T ; σ ) = e−σ δ̃BXB,

}
(2.6)

where δ̃A = δA/cA and δ̃B = δB/cB . The δ-VNLS equations (2.4) become

i(∂T A + cA∂XA + dA∂Y A) + σ [α̃A∂T T A + β̃A∂YY A + γ̃A∂T Y A

+ ξAe−2σ δ̃AX|A|2A + ζABe−2σ δ̃BX|B|2A] = 0, (2.7a)

i(∂T B + cB∂XB + dB∂Y B) + σ [α̃B∂T T B + β̃B∂YY B + γ̃B∂T Y B

+ ξBe−2σ δ̃BX|B|2B + ζBAe−2σ δ̃AX|A|2B] = 0, (2.7b)

where α̃A = αA/c2
A, β̃A = βA − γAdA/cA + αAd2

A/c2
A and γ̃A = −γA/cA + 2αAdA/cA

2, with
analogous new B-coefficients. We refer to the dissipative models, (2.4) and (2.7), as
the δ-VNLS equations.

As with VNLS (i.e. (2.2) with δA = δB = 0), the δ-VNLS systems in (2.4) and (2.7)
are Hamiltonian, but the Hamiltonians of (2.4) and (2.7) are not conserved. Important
features of Hamiltonian systems are their conserved quantities, two of which we use
in these experiments. In terms of X-evolution, the dissipative system (2.7), as well as
its non-dissipative counterpart, conserve

M =

∫ ∫
(|A|2 + |B|2) dT dY, (2.8a)

P =
1

b

∫ ∫
[(A∇A∗ − A∗∇A) + (B∇B∗ − B∗∇B)] dT dY, (2.8b)

where ∇ =(∂T , ∂Y ) and, for the symmetric experiments considered in §§ 2.2, 3 and
4, b =ωp is the difference between the carrier-wave frequency, ω, and the seeded
perturbation frequencies, ω ± ωp . We use this factor of b in our definition of P so
that M and P have the same units, and measurements can be graphed on the same
scale.

As we discuss in § 3, we are able to measure accurately only one component of P
in (2.8b), which is

Px =
1

b

∫ ∫
[(A∂T A∗ − A∗∂T A) + (B∂T B∗ − B∗∂T B)] dT dY. (2.9)
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A solution of (2.7) corresponding to a bi-periodic pattern of waves with amplitudes
uniform in Y and T is A(X) = |A0|ψA(X) and B(X) = |B0|ψB(X), where

ψA(X) = exp

[
i

ξA

2δ̃AcA

|A0|2(1 − e−2σ δ̃AX) + i
ζAB

2δ̃BcA

|B0|2(1 − e−2σ δ̃BX) + i (φ1 + φ2)

]
,

ψB(X) = exp

[
i

ξB

2δ̃BcB

|B0|2(1 − e−2σ δ̃BX) + i
ζBA

2δ̃AcB

|A0|2(1 − e−2σ δ̃AX) + i(φ1 − φ2)

]
,

⎫⎪⎪⎬
⎪⎪⎭

(2.10)

and φ1 ± φ2 are convenient forms for the initial phases of the A/B waves. We show
below that the unperturbed wave pattern shown in figure 1 is represented by a special
case of (2.10). Letting δ̃A, δ̃B → 0 in (2.10) recovers the uniform-amplitude inviscid
solution of the non-dissipative (δA, δB = 0) version of (2.7).

To determine the linearized stability of the solution of (2.7) in (2.10) with or without
dissipation, linearize (2.7) about (2.10) by substituting in a perturbed solution

A(X) = ψA(X)[|A0| + u + iv],

B(X) = ψB(X)[|B0| + w + iz],

}
(2.11)

where {u, v, w, z} are small compared to |A0| and |B0|. In doing so, one obtains four
coupled linear homogeneous partial differential equations for the real and imaginary
parts of the perturbations {u, v, w, z}, each of which depends on (X, Y, T ; σ ). The
coefficients in these equations are real, independent of (T , Y ) and depend explicitly
on X. So, we look for solutions of the form

u(X, Y, T ; σ ) = U (X; p, q) exp[ipT + iqY ] + c.c.,

v(X, Y, T ; σ ) = V (X; p, q) exp[ipT + iqY ] + c.c.,

w(X, Y, T ; σ ) = W (X; p, q) exp[ipT + iqY ] + c.c.,

z(X, Y, T ; σ ) = Z(X; p, q) exp[ipT + iqY ] + c.c.,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

where c.c. indicates complex conjugate, p is a real wave frequency, q is a real
wavenumber in a Fourier representation and {U, V, W, Z} are complex functions of
X that satisfy

cA

dU

dX
+ iρAU = σrAV,

cA

dV

dX
+ iρAV = σ (−rA + 2ξAe−2σ δ̃AX|A0|2)U + 2σζABe−2σ δ̃BX|A0||B0|W,

cB

dW

dX
+ iρBW = σrBZ,

cB

dZ

dX
+ iρBZ = σ (−rB + 2ξBe−2σ δ̃BX|B0|2)W + 2σζBAe−2σ δ̃AX|A0||B0|U,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

in which ρA = p+dAq , ρB = p+dBq , rA = α̃Ap2 + γ̃Apq+ β̃Aq2 and rB = α̃Bp2 + γ̃Bpq+
β̃Bq2. These ordinary differential equations (ODEs) reduce to algebraic equations if
there is no dissipation, as in Roskes (1976), Dhar & Das (1991), Ioualalen & Kharif
(1994), Baludin et al. (1995), Onorato et al. (2006) and Shukla et al. (2006). Craig et al.
(2007) analysed both the cases without dissipation, where (2.13) reduce to algebraic
equations, and the case with dissipation, where (2.13) remain ODEs.
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The essential difference between the two models, with and without dissipation,
appears right here. As discussed in detail by Segur et al. (2005), dissipation weakens
both the perturbation and the carrier wave (as shown by the exponentially decaying
coefficients in (2.4), (2.7) and (2.13)). The maximal growth rate of any modulational
instability is proportional to the square of the amplitude of the carrier wave, so that
the carrier-wave amplitude decays from dissipation, the (X-dependent) growth rates
of perturbations become slow and eventually stop. This way the dissipative model
predicts linear stability, because the overall growth of any perturbation is bounded.

This argument was carried out in detail by Craig et al. (2007), who proved that
for (δ̃A, δ̃B) > 0 and any choice of the other coefficients in (2.7), the spatially uniform
solution (2.10) is linearly stable. (This result similarly holds if T is the evolution
variable, instead of X. In that case, one begins with (2.4) instead of (2.7), and then
reproduces the steps in (2.8)–(2.13), but with the roles of {X, T } interchanged.) In
their proof it is essential to use the definition of stability in the sense of Lyapunov
(e.g. Nemytskii & Stepanov 1960). In the present context, the solution of (2.7) given
in (2.10) is said to be ‘linearly stable’ in the sense of Lyapunov if for every ε > 0 there
is a ∆ > 0 such that if∫ ∫

[u2 + v2 + w2 + z2] dT dY < ∆ at X = 0, (2.14a)

then ∫ ∫
[u2 + v2 + w2 + z2] dT dY < ε for all X > 0. (2.14b)

Conversely, the solution in (2.10) is ‘linearly unstable’ if there is an ε > 0 for which no
∆ > 0 satisfies (2.14). In words, stability in the sense of Lyapunov guarantees that any
perturbation that starts small enough (<∆) at X = 0 necessarily remains small (<ε) for
all X > 0. This kind of neutral stability is appropriate for Hamiltonian systems (where
asymptotic stability is usually impossible), particularly for Hamiltonian evolution
equations with variable coefficients for which growth rates are time dependent, like
the equations in (2.7) or (2.13).

To obtain the non-dissipative VNLS model, one simply sets δ̃A = δ̃b = 0 in (2.4), (2.7)
or (2.13). Then (2.13) has constant coefficients, so one may seek exponential solutions.
As shown by the authors listed under (2.12), the constant-coefficient version of (2.13)
admits exponentially growing solutions for many choices of the coefficients in (2.13);
so the non-dissipative VNLS model predicts linear instability of the wave pattern
corresponding to (2.1). To compare this prediction with data measured in a dissipative
environment, a standard correction (e.g. Benjamin 1967) is to replace the predicted
growth rate of the instability with

predicted growth rate − observed decay rate. (2.15)

Then one asserts that the non-dissipative limit of the solution in (2.10) is linearly
unstable if there is a perturbation for which

predicted growth rate − observed decay rate > 0.

In what follows, we compare the predictions (from (i) dissipative VNLS and (ii)
non-dissipative VNLS with a dissipative correction analogous to (2.15)) with the
measured evolution of wave patterns in the following way. For either model, we
consider perturbations of the two-dimensional wave pattern in (2.1) or (2.10) that are
linearly unstable according to the non-dissipative VNLS model.
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(i) For the dissipative VNLS model, we integrate ODEs obtained from (2.13)
numerically, using measured initial data in order to include the (important) effects of
initial phases in the prediction of the observed evolution of those perturbations.

(ii) For the non-dissipative VNLS model, we follow the same procedure but with
δ̃A = δ̃B =0.

In both cases, we amplify the measured amplitudes by eσ 2 δ̃Ax = eσ 2 δ̃Bx to compare the
measured evolution of the perturbations with that predicted by the two theories. This
amplification is used in figures 4–7 and 10. For the dissipative VNLS model, the ampli-
fication corresponds to the change of variables in (2.6). For the non-dissipative VNLS
model, it provides the a posteriori correction for wave damping, discussed above.

2.2. Modelling for symmetric experiments

The experiments described in § 3 and presented in § 4 use symmetric carrier waves, so
that the pattern propagates only in the x-direction and

kA = kB = k, lA = −lB = l, cA = cB = c,

dA = −dB = d, |A0| = |B0|, δ̃A = δ̃B = δ,

α̃A = α̃B = α, β̃A = β̃B = β, γ̃A = −γ̃B = γ,

ξA = ξB = ξ, ζAB = ζBA = ζ.

⎫⎪⎪⎬
⎪⎪⎭ (2.16)

In this paper we focus on perturbations with no y-dependence; so p �= 0 and q = 0.
As discussed by Ioualalen & Kharif (1994), Baludin et al. (1995) and others, in the
absence of dissipation there are instabilities both with q = 0 and with q �= 0. In
contrast, Craig et al. (2007) predicted linear stability in the presence of damping both
with q = 0 and with q �= 0. Thus, the conflicting predictions of stability/instability
that motivated this experimental study, based on dissipation versus no dissipation,
occur both with q = 0 and with q �= 0. We consider only y-independent perturbations
(q = 0) herein because these waves have the spatial periodicity required to fit into our
wave tank.

With p �= 0, q = 0, the coefficients in (2.13) become

ρA = ρB = ρ = p, ra = rb = r = αp2. (2.17)

Then in (2.13) we can make a change of variables that is equivalent to changing to a
travelling reference frame for scalar NLS, by defining

χ =
σX

c
=

σ 2x

c
. (2.18)

This change of variables scales the factor σ out of the evolution equations, as predicted
above.

We rewrite the perturbation Fourier amplitudes of {u, v, w, z}, expressed in (2.12),
as

U (X; p, 0) = Ũ (χ)e−ipX/c,

V (X; p, 0) = Ṽ (χ)e−ipX/c,

W (X; p, 0) = W̃ (χ)e−ipX/c,

Z(X; p, 0) = Z̃(χ)e−ipX/c.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.19)

(We note that since X = σx, the measured perturbation frequency corresponds to
σp, so that specifying the value of σ is not required.) With a further change of
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variables

S1(χ) =
Ũ (χ) + W̃ (χ)

2
, D1(χ) =

Ũ (χ) − W̃ (χ)

2
,

S2(χ) =
Ṽ (χ) + Z̃(χ)

2
, D2(χ) =

Ṽ (χ) − Z̃(χ)

2
,

⎫⎪⎪⎬
⎪⎪⎭ (2.20)

(2.13) reduces to two uncoupled systems:

dS1

dχ
= rS2,

dS2

dχ
= (−r + 2(ξ + ζ )e−2δcχ |A0|2)S1,

dD1

dχ
= rD2,

dD2

dχ
= (−r + 2(ξ − ζ )e−2δcχ |A0|2)D1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.21)

It is (2.21) that we integrate numerically to compare predictions and measurements
of sideband amplitudes in § 4.1.1.

Consistent with (2.1), the water surface can be represented as

η(x, y, t, X, Y, T ; σ ) = −iσe−δcχ [eiΦei(ly+φ1+φ2){|A0| + u + iv} − c.c.]

− iσe−δcχ [eiΦei(−ly+φ1−φ2){|A0| +w + iz} − c.c.] + O(σ 2), (2.22)

where

iΦ = i(kx − ωt) + i
ξ + ζ

2δc
|A0|2(1 − e−2δcχ ). (2.23)

To obtain initial conditions for {S1, S2, D1, D2} and compare the computed {S1,

S2, D1, D2} with subsequent measurements, we relate (2.22) and (2.20) to an expression
for the free surface in terms of the Fourier transforms of the measurements:

η(x, y, t) = α0 cos ωt + β0 sinωt + α−1 cos(ω − σp)t

+ β−1 sin(ω − σp)t + α1 cos(ω + σp)t + β1 sin(ω + σp)t. (2.24)

Then a0 = α0+iβ0, a−1 =α−1+iβ−1 and a1 = α1+iβ1 are the complex Fourier amplitudes
corresponding to the carrier wave, the lower sideband and the upper sideband
frequencies. The six coefficients on the right-hand side of (2.24) depend only on
(x, y), so they are constants at each measuring site.

Using (2.12) and (2.18)–(2.20), we can also rewrite (2.22) as the sum of three terms,
each of which oscillates in time with one of the frequencies {ω, ω − σp, ω + σp}.
After some algebra, aligning the rewritten version of (2.22) with (2.24) determines the
coefficients in (2.24) in terms of the variables built into (2.22):

α0(x, y) = 4σe−δcχ |A0| cos(ly + φ2) sin{Φ|t=0 + φ1},
β0(x, y) = −4σe−δcχ |A0| cos(ly + φ2) cos{Φ|t=0 + φ1},
a0(x, y) = α0 + i β0 = −4iσe−δcχ |A0| cos(ly + φ2)exp{i(Φ|t=0 + φ1)},

⎫⎪⎬
⎪⎭ (2.25)
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α−1(x, y) = 4σe−δcχ |Q(χ, y)| sin
{

Φ|t=0 + φ1 − pX

c
+ arg(Q)

}
,

β−1(x, y) = −4σe−δcχ |Q(χ, y)| cos

{
Φ|t=0 + φ1 − pX

c
+ arg(Q)

}
,

a−1(x, y) = α−1 + iβ−1 = −4iσe−δcχQ(χ, y)exp

{
i

(
Φ|t=0 + φ1 − pX

c

)}
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

α1(x, y) = 4σe−δcχ |R∗(χ, y)| sin
{

Φ|t=0 + φ1 +
pX

c
+ arg(R∗)

}
,

β1(x, y) = −4σe−δcχ |R∗(χ, y)| cos

{
Φ|t=0 + φ1 +

pX

c
+ arg(R∗)

}
,

a1(x, y) = α1 + iβ1 = −4iσe−δcχR∗(χ, y)exp

{
i

(
Φ|t=0 + φ1 +

pX

c

)}
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

where

Q(χ, y) = {S1(χ) + iS2(χ)} cos(ly + φ2) + i{D1(χ) + iD2(χ)} sin(ly + φ2),

R∗(χ, y) = {S1
∗(χ) + iS2

∗(χ)} cos(ly + φ2) + i{D1
∗(χ) + iD2

∗(χ)} sin(ly +φ2),

}
(2.26)

and (∗) denotes complex conjugate. We note that we revert to the original laboratory
variables by using χ = σ 2x and X = σx. The value of σ does not have to be specified;
it is absorbed in the damping rates, measured amplitudes and perturbation frequency,
as shown in § 4, Appendix B and also discussed below (2.19).

Next we show that initial measurements of {a0, a−1, a1} at x = 0 provide the initial
data needed to integrate (2.21). Then the solutions of (2.21) that evolve from these
initial data predict measured values of {a0, a−1, a1} at any x > 0. This procedure
applies for either the dissipative VNLS model (with δ > 0 in (2.21), (2.22) and (2.25))
or the non-dissipative VNLS model (letting δ → 0 in these equations). This way,
predictions from each model can be tested experimentally, as we do in §§ 3 and 4.
The a posteriori dissipative correction for the non-dissipative model (2.15) amounts
to removing the observed decay of the signal by augmenting measured values of the
Fourier coefficients by e+δcχ = eσ 2δcx for x > 0.

Let x = 0 denote the location of the first measuring station; then X = 0, χ =0 and
Φ|t =0 = 0. First consider the carrier wave, which oscillates with frequency ω. From
(2.25), at x = 0,

a0(0, y) = α0 + iβ0 = −4iσ |A0| cos(ly + φ2)exp{iφ1}, (2.27)

and for x � 0,

|a0(x, y)| = 4σe−δcχ |A0|| cos(ly + φ2)|. (2.28)

It follows from (2.28) that a0, the amplitude of the carrier-wave pattern, vanishes
along nodal lines defined by

ly + φ2 =
π

2
+ mπ, (2.29)

for integer m. Nodal lines of the carrier-wave pattern are evident in figure 1: they are
the straight lines, leading away from the paddles, along which the surface remains
horizontal. If {l} is known, then (2.29) determines φ2 up to a multiple of π. Separately,
at an antinode of the carrier wave, ya , where cos(lya + φ2) = ± 1, (2.27) shows that

4σ |A0| = |a0(0, ya)|,

φ1 = arg{a0(0, y)} ± π

2
,

}
(2.30)



258 D. M. Henderson, H. Segur and J. D. Carter

depending on whether cos(lya + φ2) = ± 1. Either choice of signs will do, but then
one must maintain that choice throughout the analysis. Equations (2.29) and (2.30)
contain the information available from a0(0, y).

Consider next a−1(0, y) and a1(0, y). From (2.25), at x =0,

a−1(0, y) = α−1 + iβ−1 = −4iσQ(0, y)eiφ1,

a1(0, y) = α1 + iβ1 = −4iσR∗(0, y)eiφ1,

}
(2.31)

where Q(χ, y) and R∗(χ, y) are defined in (2.26). Evaluate these first at a node of
the carrier wave, yn, where cos(lyn + φ2) = 0 and sin(lyn + φ2) = ± 1. From (2.26) and
(2.31),

e−iφ1a−1(0, yn) = ±4σ [D1(0) + iD2(0)],

e−iφ1a1(0, yn) = ±4σ [D1
∗(0) + iD2

∗(0)].

}
(2.32)

It follows from (2.32) that

8σRe{D1(0)} = ±Re{e−iφ1 [a−1(0, yn) + a1(0, yn)]},
8σRe{D2(0)} = ±Im{e−iφ1 [a−1(0, yn) + a1(0, yn)]},
8σ Im{D1(0)} = ±Im{e−iφ1 [a−1(0, yn) − a1(0, yn)]},
8σ Im{D2(0)} = ∓Re{e−iφ1 [a−1(0, yn) − a1(0, yn)]}.

⎫⎪⎪⎬
⎪⎪⎭ (2.33)

Equations (2.33) provide the initial data required for the D-equations in (2.21).
Now evaluate (2.31) at x = 0 and at an antinode of the carrier wave, where

cos(lya + φ2) = ± 1 and sin(lya + φ2) = 0. One shows from (2.26) and (2.31) that

8σRe{S1(0)} = ±Im{e−iφ1 [a−1(0, ya) + a1(0, ya)]},
8σRe{S2(0)} = ±Re{e−iφ1 [a−1(0, ya) + a1(0, ya)]},
8σ Im{S1(0)} = ±Re{e−iφ1 [a−1(0, ya) − a1(0, ya)]},
8σ Im{S2(0)} = ∓Im{e−iφ1 [a−1(0, ya) − a1(0, ya)]}.

⎫⎪⎪⎬
⎪⎪⎭ (2.34)

Given these initial data, one can integrate (2.21) to obtain {S1(χ), S2(χ),
D1(χ), D2(χ)} for any χ > 0. Then (2.25) and (2.26) predict the values of the Fourier
coefficients of the carrier-wave pattern and the two excited sidebands at any desired
(x, y).

Note that the formulae in (2.33) and (2.34) are relatively simple because we restricted
our attention to perturbations that are y-independent (so q = 0 in (2.12)). For y-
independent perturbations, the Fourier coefficients in (2.25) inherit the y-periodicity
of the carrier wave; so they must satisfy the following consistency conditions. For any
x � 0 and any (y) for which (y ± π/l) lies within the test section of the experiment,

a0(x, y) = −a0(x, y ± π/l),
a−1(x, y) = −a−1(x, y ± π/l),
a1(x, y) = −a1(x, y ± π/l).

⎫⎬
⎭ (2.35)

If the measured values of these Fourier coefficients at x = 0 fail these consistency
conditions, then either the imposed perturbations are not y-independent or some
other assumption implicit in this analysis is not satisfied.

Finally, we note that the differential equations in (2.21) decouple in S and D because
the carrier-wave pattern is symmetric and the water is deep. This symmetry in deep
water results in a pattern whose contours are rectangular, rather than hexagonal
as they are for patterns in shallow water (e.g. Hammack, Scheffner & Segur 1989).
Symmetric patterns on deep water exhibit nodal lines (i.e. lines in x with no surface
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Experiment Hp (cm) H3
p (cm) ωp/(2π) (s−1) ap Surface Water σ 2δ (m−1)

1M 0.6 −0.10 0.571 0.050 2 h + oil 1 day 0.248
2M 0.6 −0.10 0.571 0.050 2 days 2 days 0.378
3M 0.5 −0.05 0.571 0.042 1 h + oil 1 day 0.310
4M 0.6 −0.10 0.571 0.050 1 h + oil 2 day 0.150
5M 0.5 −0.05 0.571 0.042 1 day 4 days 0.022
6M 0.5 −0.05 0.571 0.042 2 days 2 days 0.150
7M 0.6 −0.10 0.800 0.050 2 days 6 days 0.074
8L 0.6 −0.10 0.571 0.100 1 h 2 h 0.128

Table 1. Prescribed experimental parameters for the moderate- (§ 4.1) and large-amplitude
(§ 4.2) experiments.

displacement), which do not occur in a hexagonal pattern. The existence of nodal
lines also provides a reason for the relative simplicity of the formulae in (2.29)–(2.34).

2.3. Numerical considerations

In order to compare predictions from the nonlinear theory with the experimental
measurements presented in § 4, rewrite (2.7) as

icÃx + αÃττ + e−2σ 2δx(ξ |Ã|2 + ζ |B̃|2)Ã = 0, (2.36a)

icB̃x + αB̃ττ + e−2σ 2δx(ξ |B̃|2 + ζ |Ã|2)B̃ = 0, (2.36b)

where we have used the fact that ∂y = 0 for the experiments herein. In (2.36), Ã= σA,

B̃ = σB , τ = t − x/c and x and t are the original physical variables. The parameters
α, ξ and ζ are constant for all experiments and are given in table 3; c =20.95 cm s−1.
The values of σ 2δ vary from experiment to experiment and are given in table 1. We
consider this system with periodic boundary conditions in the τ dimension and evolve
the solution over x ∈ [0, 150] (in centimetres). For each of the experiments, we used
initial conditions of the form

A(x = 0, τ ) = −ieiφ1 (A0 +
(
(D1(0) + S1(0))e3.588iτ + c.c.) + i((D2(0)

+ S2(0))e3.588iτ + c.c.)), (2.37a)

B(x = 0, τ ) = ieiφ1 (A0 + ((−D1(0) + S1(0))e3.588iτ + c.c.)

+ i((−D2(0) + S2(0))e3.588iτ + c.c.)), (2.37b)

where A0 and φ1 are given in table 2, and S1(0), S2(0), D1(0) and D2(0) are given in
tables 6 and 7 in Appendix B.

For the non-dissipative case (σ 2δ = 0), we used 256 Fourier modes/grid points in
the τ dimension. For the dissipative case (σ 2δ > 0), we used 128 Fourier modes. Fewer
modes are required in the dissipative case because higher wavenumber modes do not
become excited. The M integral was preserved to at least 10 places and the Px integral
was preserved to at least 6 places for all numerical simulations.

Results from numerical computations are presented in § 4.1.2.

3. Experimental apparatus and procedures
Patterns of waves corresponding to interacting wavetrains have been studied

experimentally by Kimmoun et al. (1999), Hammack et al. (2005) and Henderson
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et al. (2006). Herein we report on experiments for the special case when the A and B

waves are symmetric, as defined by (2.16). The pattern shown in figure 1 was generated
in a 6 × 12 ft2 tank with an array of 32 plunger-type paddles with triangular cross-
sections (visible at the far end of the tank in figure 1), each individually controlled and
together spanning the width W = 6 ft (see Hammack et al. 2005 for details). The water
depth h was 19.5 ± 0.5 cm for the eight experiments discussed herein. Experiments
1M–7M (M for moderate) had ‘small to moderate’ amplitudes, as defined in Segur
et al. (2005). That is, the data in these experiments conserved Px in (2.9). Experiment
8L (L for large) had a large (perturbation) amplitude, where, as defined in Segur et al.
(2005), we take ‘large amplitude’ to mean that the data did not conserve Px in (2.9).

The pattern in figure 1, which looks similar to those used in all of our experiments,
was generated by programming the paddles to oscillate according to

ηp = Hp cos
(nπ

W
yj

)
cos(ωt) + H3

p cos

(
3nπ

W
yj

)
cos(ωt), (3.1)

where Hp and H3
p are amplitudes of the paddle motions, which are different from the

amplitudes of the water motion. In (3.1) we included a third harmonic term, whose
importance was first recognized by Fuhrman & Madsen (2006) and then verified
experimentally by Henderson et al. (2006). An explicit formula is given in both places.
Including this third harmonic term is essential in generating bi-periodic patterns of
waves with nearly permanent form. It is not included in the theory (§ 2), because it is
of higher order, O(σ 3), than the terms considered there. An explanation of why H3

p

is required for numerical and physical experiments was given by Fuhrman & Madsen
(2006). The values of wavemaker displacements, Hp and H3

p , used in experiments
1M–8L are listed in table 1.

In (3.1), yj is the digitized y-location of the centre of the j = 1, . . . , 32 paddles, x

is the distance perpendicular to the paddles, ω = 8π s−1 = 4 Hz is the frequency and
n=5 is the number of nodal lines in the tank, which are visible in figure 1.

With a common frequency of 8π, the wave patterns in figure 1 and in all of the
experiments presented herein have wavenumbers κ =0.626 cm−1 and x-wavelengths
of about 10 cm. With a water depth of about h = 20 cm, κh > 12, so that these were
deep-water waves. The relative strength of gravity versus surface tension for these
waves is measured by the Bond number, Bo = g/(T κ2) = 981/{(70)(0.626)2} =36, so
surface tension had a small but measurable effect on the waves. We include surface
tension in our calculations.

To study the stability of the wave pattern generated using (3.1), we perturbed it
at the wavemakers by multiplying (3.1) by (1 + ap cos(ωpt)), where ap is the ratio
of perturbation and carrier-wave amplitudes and ω ± ωp are the frequencies of the
sideband perturbations of the carrier waves. The experimental perturbation frequency,
ωp , corresponds to σp in (2.12) and to b in (2.8b) and (2.9). The values prescribed
to the wavemakers in the experiments herein are listed in table 1. As with all of
the prescribed paddle motions, the wavemakers’ values of ap are different from the
amplitude ratios of the water motion. The wavemakers’ frequencies are the same as
those measured in the water waves.

To obtain a data set corresponding to one of the nine experiments listed in table 1,
we conducted five ‘sub-experiments’. That is, we set the wave gauges in position, ran
the wavemaker and obtained time series at this fixed position. Then we moved the
wave gauges to the next x-location, waited 15 min to obtain quiescent water, ran
the wavemaker and obtained time series. We repeated this procedure for a total of
five times and place the results from these five sub-experiments together to obtain
the data sets for each of the experiments 1M–8L.
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We used four in situ gauges. One was permanently situated as close as possible to
the wave paddles to monitor reproducibility of experiments. The data shown here
were obtained from three gauges at x-locations, xi+1 = xi + 35 cm, with i = 1, . . . , 5,
corresponding to each of the five sub-experiments. The y-locations were held constant
in each of the five sub-experiments and were at: y = 0, corresponding to the nodal line
in the centre of the tank (the location of gauge 2); y = −π/(2l), corresponding to the
antinodal line to the left of the centreline (the location of gauge 1); and y = π/(2l),
corresponding to the antinodal line to the right of the centreline (the location of
gauge 3). The gauges were capacitance-type probes made with a wire in a glass
capillary tube sealed at the end and penetrating the water; the water and wire acted
as plates of the capacitor, and the glass was the dielectric. They measured the water-
surface displacement at a ‘point’ (a circular area of about 1 mm in diameter) with a
resolution of ±0.005 cm. The first measurement station was defined to be at x1 = 0.
The physical location of x1, relative to the wavemakers, was chosen to be outside the
region of evanescent waves near the wavemaker; the last measurement station x5 was
chosen far enough from the end wall that we could record sufficient data at x5 before
the reflected wave corrupted the signal. We note that our data do not quite satisfy
the consistency relations (see (2.35)), so we used starting values for (2.21) that made
both the dissipative (δ �= 0) and non-dissipative (δ = 0) versions agree with the data
initially (see § 4).

The measured damping rate played a crucial role in this study, because we could
discriminate between the predictions of the two theoretical models within the (short)
test section of our tank only if the damping rates were large enough. Our experience,
as reported in Segur et al. (2005) and Henderson et al. (2006), is that significant
dissipation occurs within the boundary layer at the free surface, rather than at the
wetted perimeter of the fluid domain. During the course of these experiments, we
found that the surface boundary layer has two effects: (i) it causes linear dissipation
and (ii) it affects the shape of the initial wave envelopes (the wavefronts); in particular,
waves on an untreated surface ramped up to a uniform amplitude over a significant
evolution distance. Because of the shortness of our test section, we needed the
dissipation rate to be ‘large enough’ and the time series of the (associated unperturbed)
waves to have a uniform amplitude as near as possible to the wavemaker. So, in all
of our experiments, we cleaned the surface (following Rayleigh 1890) by scraping a
brass rod that spanned the tank width over the tank length in one direction. We used
a wet-vac to remove the compressed film at one end of the tank. Then we scraped the
surface in the opposite direction and vacuumed the film at the other end. Scraping the
surface in this way ensured that the time series of the unperturbed waves was uniform
at the first gauge site for a few days. However, the damping rate (in combination
with the carrier-wave amplitude) was sometimes too small to distinguish between
the dissipative and non-dissipative predictions. The damping rate was approximately
constant for a few hours (it took 2 h to perform each set of five sub-experiments) but
varied with surface age. In previous experiments on one-dimensional waves in a long
channel, Segur et al. (2005) found that the damping rate increased monotonically
with surface age; here the dependence on surface age was not so clearly correlated.
However, to increase the damping rate we conducted some of the experiments herein
a day or two after cleaning the surface. In other experiments herein, we added a few
drops of cooking oil (Smart Balance Omega) to the surface after cleaning it to enhance
the damping rate. We note that the experiments with oil had an enhanced damping
rate but the waves behaved qualitatively the same as in experiments without oil. The
oil acts as a surfactant; a review of surfactant rheology and how it increases the
damping rate of water waves is given in Lucassen (1982); experimental investigations
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include Davies & Vose (1965), Huhnerfuss, Lange & Walter (1985) and Henderson
(1998). Either method (increasing surface age or adding oil) usually gave sufficient
dissipation rates, and we consider only those experiments that had uniform envelopes
for the (associated unperturbed) waves. We do not yet know what happens at the
free surface, but we try to control it by cleaning the surface, letting it age and/or by
adding oil. In the end, we take what we get for the dissipation rates. Table 1 lists
the surface age after it was cleaned with the brass rod and whether oil was added. It
also lists the length of time that the water was in the tank after the entire tank was
cleaned (with alcohol) and filled. The measured value of the spatial decay rate, σ 2δ,
was obtained by fitting an exponential decay curve to measurements of

Mexp(−2σ 2δx) =

∫ (
N∑

j=−N

|aj |2
)

dY, (3.2)

obtained at each of the xi . For our Fourier series N = 11, and aj are the 23 Fourier
coefficients associated with a frequency band of ±2 Hz around the carrier wave
frequency of 4 Hz. The upper and lower sideband amplitudes, a±1, correspond to
j = ± 3. The integration in Y was done using the rectangle rule with the three data
points obtained from the three gauges at the fixed xi . The value of δ obtained was
then used in computations of Px . To perform the computations of Px , we rewrite (2.9)
in terms of measurable quantities to obtain

Px = exp(2σ 2δx)
1

b

∫ (
N∑

j = −N

(ωj − ω0)|aj |2
)

dY, (3.3)

using measurements obtained at each of the xi . In (3.3) ωj − ω0 measures the
frequency difference of the j th frequency component from the carrier-wave frequency,
b =3.588 s−1 is the absolute value of the difference between the sideband frequencies
(j = 3) and the carrier-wave frequency, and the frequency resolution of the Fourier
transforms is b/3. We note that the Fourier amplitudes aj listed here are those
measured in the wave tank, so they decay in x; the conserved quantities M and Px

are in the coordinate system that factors out the decay; thus, if they are conserved as
predicted, they remain constant.

4. Results
Here we present results from eight sets of (approximately symmetric) experiments:

(i) seven in which both the carrier-wave amplitudes and the perturbation amplitudes
were moderate (experiments 1M–7M) and (ii) one in which the perturbation amplitude
was large (experiment 8L). Table 2 lists measurements of the carrier-wave amplitudes
and phases from the Fourier transforms taken at the first measurement site, and the
measured dissipation rates obtained as described in § 3 for each of the eight sets of
experiments.

For two of the sets of experiments, 1M and 8L, we show time series from the three
gauges at the five measurement sites, the Fourier transforms of the time series and
measurements of the conserved quantities (2.8). For all of the moderate-amplitude
experiments, 1M–7M, we show predictions and measurements of the evolution of the
sideband Fourier amplitudes, because the evolution of these sidebands determines
whether the carrier-wave pattern is linearly unstable or stable. Predictions are shown
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|a0| (cm) |a0| (cm) arg(a0) (rad) arg(a0) (rad)
Expt no. (gauge 1) (gauge 3) (gauge 1) (gauge 1) σ 2δ (m−1) σA0 φ1

1M 0.372 0.336 0.749 −1.912 0.248 0.093 −4.472
2M 0.397 0.413 −2.738 1.084 0.378 0.099 −1.571
3M 0.303 0.264 2.140 −0.429 0.310 0.076 −4.426
4M 0.349 0.354 −2.518 −0.110 0.150 0.089 −2.775
5M 0.386 0.409 −1.223 2.413 0.022 0.102 −2.793
6M 0.412 0.436 −2.328 1.198 0.150 0.109 −0.373
7M 0.357 0.356 −0.826 2.421 0.074 0.089 0.845
8L 0.413 0.380 0.398 −2.699 0.128 — —

Table 2. Measured values of the amplitudes and phases of the carrier-wave patterns, the
damping rates obtained from (3.2) and values of coefficients associated with the carrier-wave
patterns that are used for numerical integrations of (2.21).

both from the linearized stability theories (dissipative and non-dissipative) and from
computations of the nonlinear theories (dissipative and non-dissipative).

4.1. Moderate-amplitude experiments

Figure 2 shows the time series from the three gauges at xi {i = 1, . . . , 5} in experiment
1M. The perturbation grew during this interval – one sees the growth of the sidebands
and the loss of energy of the carrier wave (due to both viscous decay and nonlinear
interactions) in the corresponding Fourier transforms shown in figure 3.

Figure 4(a) shows measurements of M obtained from (3.2) using σ 2δ = 0.248 m−1,
which was chosen to make the measurements as nearly constant as possible. Recall
that M factors out exponential decay and is predicted to be constant by (2.7). The
fact that we were able to find a value of σ 2δ that caused the computed values of M

to be nearly constant confirms that the data decay nearly exponentially. The non-
dissipative theory (2.2) also has an associated M-type integral that is Mexp(−2σ 2δx).
So, the measured values of M shown in figure 4(a) also correspond to an a posteriori
correction of the non-dissipative M-type integral.

Figure 4(b) shows measurements of Px obtained from (3.3), using the value of σ 2δ

obtained from figure 4(a). Recall that the dissipative theory (2.7) predicts that if the
waves are decaying at a rate given by σ 2δ then Px , which factors out the exponential
decay, will be constant. The fact that these data are indeed nearly constant (essentially
zero) is then a non-trivial test of the theory. As with M , the non-dissipative theory
(2.2) also has an associated Px-type integral that is Pxexp(−2σ 2δx). So, the measured
values of Px shown in figure 4(b) also correspond to an a posteriori correction of the
non-dissipative Px-type integral.

We consider the conservation or non-conservation of Px to be a fundamental result
that provides a diagnostic of whether or not the NLS-type theories are valid for the
wavefield under consideration: if the measurements of Px are not conserved, then
neither dissipative nor non-dissipative NLS-type theories are appropriate. Further, in
our experiments for which measurements of Px are not conserved (see § 4.2) there is
always an associated shift of the energy peak in the spectrum from the carrier-wave
frequency to its lower sideband. Indeed, one can consider the ratio Px/M to be an
average wave frequency (see Gordon 1986), which would be a constant if both Px and
M are conserved. Similarly, in the non-dissipative theory, the analogous ratio would
be a constant if both the M-type integral and Px-type integral decayed at the same
rate. Thus, we also consider the downshifting identified by a monotonic decrease in
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Figure 2. Experiment 1M. Water-surface displacement as a function of time for gauges in
the (nodal) centreline of the tank (b) and in the centre of the antinodal regions on its left side
(a) and right side (c) at the five measuring stations, which were 35 cm apart.

Px to be a diagnostic for the validity of NLS-type theories: if downshifting occurs,
then neither dissipative nor non-dissipative NLS-type theories are appropriate. Note
that in figure 3 the peak of the spectrum remains at the carrier-wave frequency of
4 Hz for all x, consistent with the conservation of Px in this experiment.

4.1.1. Comparison of measurements and predictions from linear stability theory

We used Mathematica to compute numerical solutions to the ODEs (2.21). Table 3
lists the frequencies and number of nodal lines n in the wave patterns as well as
the associated coefficients that are used in the computations. The y-wavenumber,
l = nπ/W , and the x-wavenumber, k, are obtained from the linear dispersion relation,
ω2 = gκ +T κ3, where κ2 = k2 + l2, g is the acceleration of gravity and T =70 dyn cm−1
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Figure 3. Experiment 1M. Fourier transforms of the data shown in figure 2 with respect to
cyclic frequency f . The dashed vertical line is at the carrier-wave frequency f =ω/2π = 4 Hz.

0 50 100 150
0

2

4

6

8

10

x (cm)
0 50 100 150

x (cm)

M
 (

cm
3 )

P
x 

(c
m

3 )

0

–2

–4

2

4

(a) (b)

Figure 4. Experiment 1M. Measurements (dots) of (a) M and (b) Px using σ 2δ = 0.248 m−1.
The horizontal lines are drawn arbitrarily as reference to show constant values.
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ω (s−1) n α (s) β (cm2 s−1) γ (cm) ξ (cm2 s)−1 ζ (cm2 s)−1

8π 5 −0.013 17.181 0.223 −20.396 −38.393

Table 3. Frequency of the carrier-wave pattern, span-wise mode number and numerical
values for the coefficients defined in (2.16) in terms of coefficients first used in (2.7).

|a−1| (cm) |a−1| (cm) arg(a−1) (rad) arg(a−1) (rad)
Expt no. (gauge 1) (gauge 3) (gauge 1) (gauge 3)

1M 0.038 0.031 0.070 −2.673
2M 0.033 0.033 −1.906 1.682
3M 0.013 0.019 1.211 −1.358
4M 0.022 0.023 2.554 −1.100
5M 0.027 0.026 −1.061 2.349
6M 0.036 0.033 −2.716 0.710
7M 0.029 0.028 −1.155 1.883
8L 0.083 0.072 0.032 3.125

Table 4. Initial amplitudes and phases of the lower sidebands.

|a1| (cm) |a−1| (cm) arg(a1) (rad) arg(a−1) (rad)
Expt no. (gauge 1) (gauge 3) (gauge 1) (gauge 3)

1M 0.025 0.019 −1.498 2.258
2M 0.023 0.019 −0.209 −2.393
3M 0.007 0.010 0.136 −2.749
4M 0.009 0.013 2.325 −1.798
5M 0.022 0.020 2.097 −0.204
6M 0.024 0.024 1.511 −1.253
7M 0.017 0.014 2.742 −0.152
8L 0.051 0.046 −2.012 1.380

Table 5. Initial amplitudes and phases of the upper sidebands.

is the value of the surface tension used. These numbers were the same for all of the
experiments.

The values for |A0|, which is a coefficient in (2.21), and φ1, which is required
for the initial conditions, come from the carrier-wave patterns measured at x1 in
each set of experiments. Their values are related to measurements of the complex
Fourier amplitude of the carrier-wave frequency by (2.30). However, because the
actual wave patterns were not perfectly symmetric, we could not unambiguously use
(2.30). Instead, we chose values for |A0| and φ1 to ensure that the computations of
both the dissipative (δ �= 0) and non-dissipative (δ =0) versions of (2.21) agreed with
the data initially. The values we used are listed in table 2. The initial values for the S

and D are listed in Appendix B.
Once the values of |A0| and φ1 were chosen, there were no further choices. The

initial conditions for (2.21) are given by (2.33) and (2.34). The values of a±1(0, yn) and
a±1(0, ya) are the Fourier amplitudes of the upper and lower sidebands measured at x1

in each set of experiments. Their magnitudes and phases are listed in tables 4 and 5.
The computations of (2.21) give values of Si and Di , i =1, 2, as a function of x.

The corresponding amplitudes of the upper and lower sidebands, a±1, are related to
Si and Di by (2.24), (2.25) and (2.26) using cos(ly +φ2) = 1/0 to correspond to gauges
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Figure 5. Measurements (dots), multiplied by eσ 2δx , and predictions (curves) from computa-
tions of (2.21) of the amplitudes of the two seeded sidebands from the three gauges. The
gauges are in the antinodal region to the left (black) and right (grey) of the centreline (a,
c), and in the nodal line (b, d ). The solid curves are from the dissipative theory. The dashed
curves are from the non-dissipative theory.

in antinodes/nodes. We note that for each experiment one set of initial data gives the
predictions of both sidebands.

Figure 5 shows measurements from experiment 1M of the magnitudes of the
complex Fourier amplitudes, a±1, corresponding to the wave components with
frequencies ω ±ωp obtained by the three gauges at the five measurement stations. For
appropriate comparisons with both the dissipative and non-dissipative theoretical
predictions we have amplified the measurements by the same exponential as the
theory so that the actual values shown are exp(σ 2δx)|a±1(x, y)|. Predictions from
(2.21), obtained as described above, are also shown for δ = 0 and for σ 2δ = 0.248 m−1.
Multiplying the data by the exponential factor corresponds to adjusting the non-
dissipative theory for dissipative effects a posteriori as in (2.15). For the dissipative
(δ-VNLS) model, multiplying the data by this factor corresponds to the change of
variables in (2.6). Thus, adjusting the data in this way can be interpreted sensibly
in either theory, but figures 5(a) and 5(c) show that the two theories give quite
different predictions, even over the (relatively short) 140 cm of our test section. The
x-interval of 140 cm over which measurements were obtained corresponds to about
14 wavelengths of the 4 Hz carrier waves. Figure 5(a) shows that the growth of the
lower sideband, |a−1|, is well modelled by the dissipative (δ-VNLS) theory, much more
accurately than the non-dissipative theory. Figure 5(c) shows that the upper sideband,
|a1|, is modelled better by the dissipative theory than by the non-dissipative theory,
but both theories over-predict the growth of the upper sideband. Figures 5(b) and
5(d ) show that the nodal lines remain quiescent, as predicted by both models, even as
perturbations grow in the antinodal regions. Having the lower sideband grow faster
than the upper sideband is typical in experiments like these, not only for bi-periodic
waves but also for plane waves (see the data of Lake et al. 1977, Melville 1982, Segur
et al. 2005 and others).
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Figure 6. Results from experiments 2M–7M. Columns (a) and (b) show measurements (dots),

multiplied by eσ 2δx , and predictions (curves) from computations of (2.21) of the amplitudes of
the lower (a) and upper (b) seeded sidebands from the two gauges in the antinodal region
to the left (black) and right (grey) of the centreline of the wave tank. The solid curves are
from the dissipative theory. The dashed curves are from the non-dissipative theory. Column
(c) shows Px (in the dissipative reference frame). The horizontal lines are drawn arbitrarily as
reference to show constant values. The dissipation rate used for each row is listed in table 2
for the corresponding experiment.

There is nothing special about the experiment shown in figures 2–5. Comparisons
of measurements (amplified by the exponential factor as in figure 5) and the
dissipative/non-dissipative predictions of the sideband amplitudes are shown for
six additional experiments in figure 6, along with graphs of the diagnostic Px given
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by (3.3), which use the value of σ 2δ obtained from (3.2). The first column of figure 6
shows comparisons for the lower sideband, |a−1|; the second column of figure 6
shows comparisons for the upper sideband, |a1|. The theoretical predictions (with and
without dissipation) are the same for each sideband, while in the experiments either
|a−1| and |a1| grew at the same rate or |a−1| grew faster. In all cases the dissipative
theory does a better job of predicting measurements than the non-dissipative theory,
except perhaps in one case, experiment 5M, in which the two theories were virtually
indistinguishable within the 140 cm test section of our tank. Thus, experiments in
our (short) tank were able to discriminate between the predictions of the two models
tested only for large enough dissipation rates.

The experiments shown in figures 2–5 and figure 6 show: (i) a clear difference in the
theories with and without dissipation and (ii) that the dissipative (δ-VNLS) theory
models the experiments more accurately than does the non-dissipative theory, even
after an a posteriori correction for dissipation.

4.1.2. Comparison of nonlinear inviscid and dissipative theories

Separate from the question of linear stability is the question of the effects of
nonlinear interactions. Here we show numerical computations (discussed in § 2.3)
of the nonlinear VNLS equations, (2.7), rewritten as (2.36) with dissipation (δ > 0)
and without dissipation (δ =0). We recall that (2.36) are in the reference frame
that factors out dissipation, as described in the last paragraph of § 2.1. All of the
computations herein used initial conditions corresponding to the experimental values
for the associated experiments, experiments 1M–7M.

Figure 7 shows comparisons of the nonlinear results with measurements over the
short (about 150 cm) distance available for the physical experiments. Columns (a)
and (b) show a comparison of the measured and simulated sideband amplitudes for
all seven experiments. (Experiment 1M is shown in the last row of figure 7 for an
easier row-by-row comparison with the linear results shown in figure 6. For the linear
results, Experiment 1M is shown in figure 5.) In Experiments 1M–4M and 6M, the
curves from the dissipative nonlinear theory are essentially identical to the curves
from the dissipative linear theory shown in figures 5 and 6. For these experiments
the curves from the non-dissipative nonlinear theory are qualitatively (and of course
quantitatively) different from the curves from the non-dissipative linear theory. For
example, the curves in figure 7 from the non-dissipative VNLS theory corresponding
to experiments 1M, 2M and 6M show a bound on the growth of sidebands due to
nonlinear interactions within the first 150 cm of evolution, but the measured data do
not follow these curves. The measured data for experiments 1M, 2M and 6M are better
predicted by the dissipative δ-VNLS theory. The physical experiments, experiments
1M–4M and 6M, are better predicted by the dissipative nonlinear theory. Experiments
5M and 7M have fairly small damping, so that the predictions of early evolution
from the nonlinear dissipative and non-dissipative theories are nearby each other. This
nearness is also true for predictions from the linear theory shown in figure 6. The
linearized theories, shown in figure 6, predict faster growth of the primary sidebands
than do the nonlinear theories, shown in figure 7. So, in experiments 5M and 7M,
both dissipation and nonlinearity are important in the first 150 cm of evolution.

Column (c) of figure 7 shows comparisons of the nonlinear predictions and
measurements of the carrier-wave amplitude over the first 150 cm of evolution.
No such comparison is shown for the linearized models because the carrier-wave
amplitude is necessarily constant in these models. Allowing for nonlinear interactions
shows that again, the dissipative nonlinear theory does a better job of predicting
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Figure 7. Measurements (dots), multiplied by eσ 2δx and also shown in figure 6, and predictions
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(c) |a0| (cm) as functions of x (cm).
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experimental results than does the nonlinear non-dissipative theory. In experiments
1M, 2M, 4M and 6M, predictions from the dissipative nonlinear theory (solid curves)
and non-dissipative nonlinear theory (dashed curves) are qualitatively different. Note
that in each of these experiments, the dissipative theory predicts the measured
data much more accurately than does the non-dissipative theory. In general, the
dissipative nonlinear theory, like the dissipative linear theory, predicts the qualitative
and quantitative features of initial evolution better than the non-dissipative theory.

Finally, we note that short-crested waves, like those shown in figure 1, need not
obey Melville’s (1982) criterion for breaking of (long-crested) plane waves. In his
study of breaking of plane waves on deep water, Melville (1982) found wave breaking
for values of initial steepness ak from about 0.16 to 0.29, where k( = 2π/λ) is the
wavenumber and a = 0.5(amax − amin) is the wave amplitude. Later experimental
studies (e.g. Tulin & Waseda 1999) found even lower threshold values for breaking.
Note from table 2 that our ‘moderate-amplitude’ experiments had values of a from
about 0.31 to 0.50 cm; so with λ=10 cm, our waves had ak varying from about
0.20 to 0.31, which goes above Melville’s criterion for (plane) wave breaking. Even
so, we observed no wave breaking in these experiments. How to generalize Melville’s
criterion for wave breaking to short-crested waves seems to be an open question at
this time.

4.2. Large-amplitude experiments

What happens if wave amplitudes are larger? Here we discuss an experiment, 8L, in
which we used the same wavemaker forcing as in experiments 1M, 2M, 4M and 7M,
except that we doubled the ratio of perturbation amplitude to carrier-wave amplitude
at the wavemaker (see table 1). Figure 8 shows the time series from the three gauges
at xi {i =1, . . . , 5}, while figure 9 shows the corresponding Fourier transforms. The
perturbation is more visible at the first measurement site in this experiment and
evolved asymmetrically as seen by the enhanced growth of the lower sideband in
figure 9. There was also non-monotonic growth in the nodal line. Figure 10 shows
the measurements of M , which use σ 2δ = 0.128 m−1 in (3.2).

A possible scenario for the perturbation evolution is that if its amplitude is large
enough, nonlinearity becomes important and bounds further growth, dominating the
effects of dissipation. However, the experiments show something entirely different:
frequency downshifting occurs when nonlinearity becomes important enough, contrary
to the prediction of either VNLS-type model, with or without dissipation. The Fourier
transforms at x1, shown in figures 9(a)–9(c), show that the peak of the spectrum is at
the carrier-wave frequency of 4 Hz. But by x5 (figures 9m–9o) the peak shifted to the
lower sideband at frequency 3.43 Hz. This result is consistent with the measurements
of Px , shown in figure 10(b), which become monotonically more negative. Gordon
(1986) first used P (a scalar for plane waves) to measure the amount of frequency
downshifting for experiments in nonlinear optics. We note that even if the dissipation
rate were unknown, one could see that the P-integral did not behave as predicted
by any NLS-type model. No positive dissipation rate allows the components of P to
change sign, or to start at P = 0 and have a component become increasingly negative.
So figure 10(b) shows behaviour that is impossible for any NLS-type model.

The VNLS model (with δ = 0) predicts that the integral P is constant; the δ-
VNLS model, (2.7), predicts that P is constant, and the original dissipative model,
(2.2), before the overall damping is factored out by (2.3) or (2.6), predicts that the
corresponding integral decays exponentially with the same rate as the dissipative
analogue of M(x): (2σ 2δ). The experimental result in figure 10(b) contradicts all of
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Figure 8. Experiment 8L. Water surface displacement as a function of time for gauges in the
(nodal) centreline of the tank (b) and in the centre of the antinodal regions on its left side
(a) and right side (c) at the five measuring stations, which were 35 cm apart.

these predictions. It shows that when the perturbation amplitude is large enough,
both VNLS models, with or without dissipation, fail to correctly predict the evolution
of the integral P . The shifting of the spectral peak to ω − ωp is an example of
downshifting, a phenomenon that was first observed in water waves (Lake et al.
1977) and later in optics (Mitschke & Mollenauer 1986). A review of downshifting in
water waves is given by Dias & Kharif (1999). We also observe this downshifting in
experiments in which we increase only the carrier-wave amplitudes.

Both the frequency shift and the associated variation in P were observed in Segur
et al. (2005) and were proposed as measures of when an NLS model is/is not a valid
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Figure 9. Experiment 8L. Fourier transforms of the data shown in figure 8 with respect to
cyclic frequency f . The dashed vertical line is at the carrier-wave frequency f =ω/2π = 4 Hz.
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model for the evolution of plane waves. We reiterate that here: if M and P do not
show the same exponential decay rate, then coupled NLS equations are not a valid
model for deep-water waves.

5. Conclusions
In this paper, we consider two models for the evolution of bi-periodic

patterns of deep-water waves: the VNLS equations with dissipation added in a
posteriori and the δ-VNLS equations, which include dissipation ab initio. The non-
dissipative VNLS model predicts that a uniform-amplitude pattern is unstable to
modulational perturbations. The dissipative δ-VNLS model predicts that a uniform-
amplitude pattern is stable to modulational perturbations. We show eight sets of
experiments: seven in which the carrier-wave-perturbation combination had moderate
amplitudes and one in which the carrier-wave-perturbation combination had a large
amplitude.

For the moderate-amplitude experiments, the dissipative δ-VNLS model describes
the experimental results more accurately than does the non-dissipative VNLS model,
even after that model is corrected for dissipation. This difference in accuracy shows
up in two different ways.

(i) Experimental tests of the linearized stability analyses show (in figures 5 and 6)
that the dissipative model predicts the measured evolution of sidebands more
accurately than does the non-dissipative model with a dissipative correction. In
seven different experiments, whenever the two models give different predictions, the
δ-VNLS model is more accurate. The δ-VNLS model predicts that two-dimensional
wave patterns on deep water are linearly stable, and the superior accuracy of this
model leads to the title of this paper.

(ii) Experimental tests of the two nonlinear models, without linearizing, are shown
in figure 7. Again, whenever the two nonlinear models give different predictions, the
δ-VNLS model is more accurate.

For the large-amplitude experiments, neither model proves adequate because a
quantity (Px) that is predicted to be conserved by both models is not conserved in
the experiments. Our experiments show that when this quantity is not conserved,
downshifting, which is not predicted by either model, occurs. For this reason we
conclude that VNLS-type models are inadequate for large-amplitude wave pattern
evolution. Which model should replace VNLS-type models (or NLS-type models for
single carrier waves) for evolution of large-amplitude waves is an open question.

We thank the referees, whose comments significantly improved the paper, R. Geist
for assisting with the experimental apparatus and the National Science Foundation for
support through grants NSF-DMS-FRG-0139847, NSF-DMS-FRG 0139742, NSF-
DMS 0708352 and NSF-DMS 0709415.

Appendix A. VNLS coefficients in the presence of surface tension
In (2.2), the coefficients ζAB and ζBA provide a measure of the coupling between

the A and B wavetrains. These coefficients are given below and correct errors in the
version given by Hammack et al. (2005). In the limit of zero surface tension, the
coefficients given below agree with those given by Dhar & Das (1991) and later by
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Onorato et al. (2006) (except for a misprint there):

(
κBσB

ωB

)2
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2ΓAΓB
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+
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σ 2
B − 1

)
2gσA

+
G − J

2κAσA

[ωA(kAkB + lAlB) − κAσAκBσBωB] +
iF

2

[
kB(kA + kB)

+ lB(lA + lB) +
ωBΓA

ωAΓB

(kA(kA + kB) + lA(lA + lB)) − κ+σ+ωA

ωB

ΓB

]

− iH

2

[
kB(kA − kB) + lB(lA − lB) +

ωBΓA

ωAΓB

(kA(kA − kB)

+ lA(lA − lB)) − κ−σ−ωA

ωB

ΓB

]
,

(
κAσA

ωA

)2

ζBA = − 1

2ΓAΓB

[
2ωAΓB(kAkB + lAlB)(κBσB + 2κAσA) + 2ωBκ2

Aω2
A

− ωBκAσAτ
[
2(kAkB + lAlB)2 + κ2

Aκ2
B

]]
+

κ2
AκBωB

(
σ 2

A − 1
)(

σ 2
B − 1

)
2gσB

+
G − J

2κBσB

[ωB(kAkB + lAlB) − κAσAκBσBωA] +
iF

2

[
kA(kA + kB)

+ lA(lA + lB) +
ωAΓB

ωBΓA

(kB(kA + kB) + lB(lA + lB)) − κ+σ+ωB

ωA

ΓA

]

− iH

2

[
kA(kA − kB) + lA(lA − lB) +

ωAΓB

ωBΓA

(kB(kA − kB)

+ lB(lA − lB)) + κ−σ−ωB

ωA

ΓA

]
,

where

κA/B =
√

k2
A/B + l2A/B, κ± =

√
(kA ± kB)2 + (lA ± lB)2,

σA/B = tanh κA/Bh, σ± = tanh κ±h,

ΓA/B = g + τκ2
A/B, Γ± = g + τκ2

±,

ω2
A/B = κA/BΓA/BσA/B, ω2

± = κ±Γ±σ±,

F = −i

κAσAκBσB (ωA +ωB )− ωAωB

ΓAΓB

(ωA +ωB )3 +(Γ+ − τ (kAkB + lAlB ))

(
ωA

ΓA

(
κ2

+ −κ2
A

)
+

ωB

ΓB

(
κ2

+ −κ2
B

))
ω2

+ − (ωA + ωB )2
,

H = −i

κAσAκBσB (ωA −ωB )+
ωAωB

ΓAΓB

(ωA −ωB )3 +(Γ− +τ (kAkB + lAlB ))

(
ωA

ΓA

(
κ2

− − κ2
A

)
− ωB

ΓB

(
κ2

− −κ2
B

))
ω2

− − (ωA − ωB )2
,



276 D. M. Henderson, H. Segur and J. D. Carter

Experiment σS1 (cm) σS2 (cm)

1M 0.00478 − 0.00300i 0.00125 − 0.00274i
2M −0.00217 − 0.00564i −0.00245 − 0.00126i
3M −0.00264 + 0.00211i 0.001744 + 0.000256i
4M −0.00319 + 0.00116i 0.00196 + 0.00122i
5M 0.000709 − 0.00102i −0.0000708 − 0.00601i
6M 0.00132 + 0.00000i 0.00389 − 0.00602i
7M 0.00160 + 0.000889i 0.002752 − 0.004501i

Table 6. Initial values of σS1 and σS2 for all experiments.

Experiment σD1 (cm) σD2 (cm)

1M −0.000120 + 0.000238i −0.000312 − 0.0000677i
2M −0.000108 + 0.000122i 0.000106 − 0.000332i
3M 0.000134 + 0.0000448i 0.000246 − 0.0000767i
4M −0.000261 − 0.000212i 0.000361 − 0.000325i
5M −0.0000754 − 0.000524i 0.0000708 + 0.000280i
6M −0.0000739 + 0.000113i 0.000112 + 0.000207i
7M −0.000463 + 0.000289i −0.000580 − 0.000327i

Table 7. Initial values of σD1 and σD2 for all experiments.
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.

Appendix B. Initial conditions
The initial conditions used for computations of (2.21) are listed in tables 6 and 7.

The initial conditions for numerical computations of (2.7) rewritten as (2.36) are
obtained from these values as described in § 2.2.
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